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Multiscale Autoregressive Processes, Part II: Lattice
Structures for Whitening and Modeling

Michele Basseville. Albert Benveniste, Fellow, IEEE, and Alun S Willsky . Fellow, IFRE

Abstract—1n part 1 of this two-part paper we introduced a
class of stochastic processes defined on dyadic homogenous
trees. The motivation for the study of these processes comes
from our desire to develop a theory for multiresolution deserip-
tions of stochastic processes in one and multiple dimensions
based on the idea underlying the recently introduced theory of
wavelet transforms. In part 1 we described how this objective
teads to the study of processes on trees and began the devel-
opment of a theory of autoregressive (AR) models for isotropic
processes on trees, In this second part we complete that inves-
tigation by developing lattice structures for the whitening and
modeling of isotropic processes on trees. We also presemt a re-
sult relating the stability properties of these models to the re-
flection coefficient sequence introduced in part 1. In addition.
this framework allows us to obtain a detailed analysis of the
Wold decomposition of processes on trees. One interesting as-
pect of this is that there is a signiticantly larger class of singular
processes on dyadic trees than on the integers.

1. INTRODUCTION

N part [ [1] of this two-pant paper we introduced the

class of isotropic processes on homogeneous dyadic
trees. and began the analysis of the corresponding class
of autoregressive (AR} processes. As developed in {1].
the motivation for the study of these processes comes fro.n
our desire to provide a statistical framework for multi-
scale signal processing based on the structure of the re-
cently introduced class of wavelet transforms {7].

In [1]. we introduced and described the geometry of
homogeneous dyadic trees and a natural notion of **past’™”
and "“future.”” where 2 move into the **past™ (**tuture’")
corresponds o moving to a coarser (finer) scale descrip-
tion of a signal. The class of isotropic processes on trees
was also introduced in [1}. and. with our notions of past
and future, we defined the class of autoregressive (AR)

Manusernipt received March 200 1990 revised May 30, 1991, The work
of M. Basseville and A Benveniste was supported m part by Grant CNRS
G034 and by INRIA-NSF agreement. The work of A0S, Willsky was
supported in part by the Air Foree Otlice of Saentitic Rescarch under Grant
AFOSR-92-1-0002 and by the National Science Foundation vider Grants
MIP-9015281 and INT-9002393, and in part by the LS. Army Research
Office under Contract DAALOLR6-K 0171, and b, INRIA.

M. Bassevilie v with IRISA. Campus de Beauheu. 35042 Rennes Cedes,
France. and with the Centre Nanonal de ls Recherche Scieautique ({CNRS),
France

AL g venste s Wit IRIS AL Campus de Beaudicu, 35042 Rennes Cedex.
France, and with the Instut Natonal de Recherche en Intormatique et en
Automatigue NRIAY, Franee

AL S Wallsky s with the Laboratory for Intormation and Decision Sy
tems, and the Department of Electrical Bagincenng and Computer Scienee.
Massachusetts Jastaute of Technology. Cambndge, MA 02139

IEEE Log Number 9201075

1053 587X:92503.00

isotropic processes and begun the study of their parame-
trization. The major result of [1] was 1o establish that the
only suitable purametrization of sotropic processes on the
dyadic tree s obtained via reflectuon coetlicients tollow
ing the generalization of the Schur-Levinson parumetnr-
zation techniques for usual fime series. In this second pan,
we further investigate the properties of isotropic pro-
cesses in terms of their reflection cocthicients. In partic-
alar, in this paper we use the analysis s (1] both w con-
struct lattice structures for the whitening und modeling of
AR processes on dyadic trees aind to unalyze in detal these
models and the properties of 180tropic processes.

This paper relies heavily on the framew ark and resntie
of [1]. and we refer the reader to that paper for rererence
In the next section we provide @ brief summany of some
of the basic notation and constructs from {1]. Section HI
is then devoted to the presentation of whitening and mod-
eling filters for AR isotropic processes. Unnormalized as
well as normalized versions of these filters are given. In
particular. the normalized modeling tilter appears as a tree
structured sceattering system. Then, in Section IVL several
properties of isotropic processes are analyzed in terms of
the reflection coetlicient sequence. Specifically. AR pro-
cesses are characterized as being the processes with only
finitely muny nonzero reflection coctiicients, purely non-
deterministic processes are characterized in a fairly sim-
ple way. a stability result for the modeling filters is pre-
sented. and finally it is shown that evern hmite set of
reflection coefficients properly define a umique AR pro-
cess provided they belong to an casily defined domain.
Finally. future issues. both practical and theoretical. are
discussed in the conclusion. Many of the results presented
here, while paralleling those for time series. are more
complex than their time series counterparts due to the sig-
nificant increase in geometric complexity in going trom a
homogencous tree of order 1. t.c.. the usual discrete-time
index set. to the dyadic tree. which is of order 2. For
example, as introduced in {1} and deseribed in detail n
Section IV. the prediction crror processes assoctated with
latice filters on dyadic trees are vector processes of di-
mension that increases with fitter order.

II. Dyapic TREEs, [SOTROPIC PROCESSES, AND
PrentcTion ERROR RECURSIONS
In this section we review some of the basic concepts
and constructs described in [ 1], We refer the reader to | 1]
tor details.
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A homogencous dyadic tree 3, as dlustrated in Fig. 1,
has a natural notion of distance dis. 1) between any two
nodes, s, 7 € 3. By choosing o puarticular boundary point,
denoted by —~co, we can redraw J3 as in Fig. 2. Here all
of the points that are at the same “"distance from —oo’”
appear on the same level or horocyele. For multiscale pro-
cessing we can think of each horocyele as corresponding
to describing signals at a particulur scale, with finer scales
being farther from —oo. Also. as illustrated in the tigure
the choice of —oo leads naturally to a backward (fine-to-
coarse) shift, y ~ ' and two forward (coarse-to-fine) shifts
a and 3. Also it is useful to introduce the operator 6. As
indicated in Fig. 2. the transtormation & which inter-
changes nodes ¢ and 1é for all 7 € 3. can be thought of
locally as an interchange pivoted at the immediate ances-
tor ry ~'. Higher order operators 4"’ correspond to inter-
changes pivoted at more distant ancestors of 1 (i.e.. ¢y ",
n > 1). The nodes 18 and 15'" are indicated in the fig-
ure.

As developed in [1]. all nodes in 3 can be coded in
terms of shifts from a specified, arbitrary node 1,. Specit-
ically, let

L=y Uy DH*sla. Bl* U {a. B} Q2.1

Then 3 = {r,w|w e L£}. The order {w| of any move w €
£ is defined as

w| = d(1. ). 2.2)

A move w is causal, denoted by w < 0. if wr is on the
same or a coarser horocycle than that on which ¢ is lo-
cated.

A zero-mean stochastic process Y,. t € 3. indexed by
nodes on the tree is isotropic if the correlation between Y
at any two nodes depends only on the distance between
those rades, t.e.,

E‘ Y( y\] = rdu_n- (23)

Equivalently, Y, is isotropic if Z, = Y,,,, has the same sta-
tistics as ¥, for any isometry 2 3 — 3. L.e.. any one to
one and onto map of J onto itself that preserves distances.
An AR model of order p has the form

.
2 a Y, + aW,
w i

wWe

Y, = 2.4

where W, is umit variance white noise. Our interest here
is in developing AR models for isotropic processes, and
as discussed in [ 1], the constraints of isotropy imply rather
complex constraints on the «, coeflicients in (2.4). Note
also that the number of these coefhicients essentially dou-
bles as the order increases by 1.

In {1] we began the process of developing an alternate
description of isotropic AR processes in terms of gener-
alizations of the Levinson and Schur recursions for sta-
tionary time series. Because of the structure of the dyadic
trees, in particular the fact that the number of nodes at a
given distance from a specified node increases geometri-
cally with distance. the development of these recursions

FRANSAWCTIONS ON SJGN AT PRUECESSING NP oA Al s
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and the lattice filters to be described here involve predic-
tion error vectors of dimensions increasing with the order
of prediction. Specifically. define the ath order past ot ¥
at node ¢

Y, = H{Y.ow <0 iwl = nl (2.5

where 3C{ - - -} denotes the Tincar span of a set of ran-
dom variables. Then the sth order backward prediction
errors at node ¢ are given by

F,.o= F 0w bel = 0w <0} (2.6

where
Fl.n(w) = Ym - K Ym ' (‘\’r n

1) (2N

We also et [, denote the tull 21 “dimeasional vector




BASSEVILLE e af.. MULTISCALE AR PROCESSES. PART (I

of F, ,(w). where [x] = largest integer < v and where the
ordering of the w in (2.6) used in constructing F, , is de-
scribed in [1}. Similarly, we have the nth order forward
prediction errors at node ¢

& .= J{E 00wl < nand w © 0} (2.8)
where

E ow) =Y, — EY,

‘yr*, Voo l)- (29)

The ordering of the w in (2.8) to construct the 21"~ =L
dimensional vector £, , is described in [1].

In {1} we began the analysis of the recursive computa-
tion of these prediction errors as the order n increases.
What we found was that as in the usual Levinson recur-
sions for time series the forward and backward prediction
errors of one order could be expressed recursively in terms
of projections onto prediction error vectors of the preced-
ing order. Most importantly, the constraint of isotropy al-
lowed us to show that the required projections onto mul-
tidimensional spaces such as F, , and &, , reduced in fact
to projections onto specific scalar random variables.
namely. the barycenters of the prediction error vectors:

e =271 E L (10)

wi<nwes(

fa=2d ¥

Iwl=nw <0

F, (W) (2.1

Indeed. these projections can be expressed recursively in
terms of a single scalar sequence of reflection coefhicients
k,. Furthermore. as shown in {{], there exist a set of sca-
lar Levinson recursions for the barycenter error pro-
cesses. In particular, for n even

€n = €y — Knfiy tnoy (2.12)

fn =3 mn ¥ 2po ) = kel (2.13)
where

k, = cor (e, s fr 1n-1) (2.14)

and cor (x, ¥) = E(xv)/[E(x*YE(v5)}' . Fornodd, n >

Cn = (€t F € vt )) = ko ey (215

fon = fo ey = 3k (€ + €gun 12,1} (2.16)
with

k, = cor (% (€rp 1 F € vy fiy tw-r) 20D

Also, forn =V » . = E | f, = F, , and

Fio=Y,  —kY (2.18)
E,=7TY, - kY, (2.19)
where
Y.
k; o HY, ] =0 (2.20)

EY, 0

In addition, the variances of the prediction errors satisfy

the following: for n even

ol, = Ete} ) = (1 - ke | (2.21)
A L ] + k,é a. .
ol = E(fi) = (\ S A;{)U;, L2022

For n odd

0., = a;,, = a, = (1 -k ye, (223
where (2.23) holds forn = 1 as well. with o = . By
using these equations 113 possible o denive a recursine
procedure for computing the &, that 1s the counterpart o
the recursions in the standard Levinson algorithm for time
series. We also have Schur recursions which provide an
alternative mechanism for computing the reflection voel-
ficient sequence. Specifically, define the formal power se-
ries

P, =covi(¥.e,) = >R Yoo, .0 w1224
Y J_U
O, =cov (Y. fo= 2 EYf, 0w (225
" ;'\i

and recall the following operators on formal power series
we introduced in {1]: given

we set

+15] = '2;{ Sy vt W
(S{“[S] —

Then for n even

Pn = Pn—l - kn'len - ;l (226’

Qn = %(‘Y[Qn—'l] + 6" :'Ipn II) - k‘:Pn } (2.27)
where

A'" — }[Qn"l}(.o) + 6“’ J[Pn' l}(()) (:zx'
2P, {0)

while for n odd

Pﬂ = %(Pn»l + 6“” " :][P,,, ll) - kn‘IIQn - ll (22()\
Qo= 10 (1 = ko3 (P + 8" 7P, 230)
2v1@, 410
k= 110, IO .30
Purrl(O) +6 “Pn l](())
where
Po=Q0n= 2 r, - (2.3

woe

We also note here that, as for time senes, there are con-
straints on the reflection coetheients. which, thanks to the
conditivas icquited i aiiopy. aie slightly more com-
plex for isotropic processes on dyadic trees:

for n even, " <k, =1 (2.33
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for 1 odd. -1 =4, €1 (2.3

As we develop in this paper, these results tead 1o tattice
structures for AR nrocesses on dyadic trees in which ondy
one new reflection coetlicient is introduced as the order
increases by one. Furthermore, the constraints (2.33).
{2.34) on these cocthicients are quite simple and ure de-
coupled tfrom one another. Thus the lattice filter parame-
trization of AR procusacs i far superior 1o the direct AR
model (2.4).

HI. VECTOR LEviINsON RECURSIONS AND MODELING
AND WHITENING FILTERS

In {1] we showed that the recursive computation of the
components of the prediction crror vectors £, and F,,
involved prejections onto the barycenter error processes.
In addition. we developed scalar Levinson recursions for
the barycenters. In this section we combine these results
in order to develop whitening and modeling filters for Y.
As we will see. in order to produce tme whitening filters.
it will be necessary to pertorm a further normalization o*
the innovations. However. the formulas for £, , and F, ,
are simpler, and consequently we begin with them.

A. Filters Involving the Unnormalized Residuals

To begin, let us introduce a variation on notation used
to describe the structure of the covariance matrix of the
prediction error E, , which we denoted in [1] by X, . In
particular. we let 1, denote a unit vector all of whose
components are the same:

e = —=— 1. (3.1

We also define the matrix

Uy = 1, 1% (3.2)

which has a single nonzero eigenvalue of 1. Equations
(3.1, (3.2) define a family of vectors and matrices of dif-
ferent dimensions. The dimension used 1n any of the
expressions to follow is that required for the expression
to make sense. We also note the following identities:

| .
fx = 1hF = —memee 2 Fw) (3.4)
Jdim F
i = 1, f* = UJF 3.5

where F = {F(w)} is a vector indexed by words w ordered
as described in [1]. where fis its barycenter. and where
f*is a normalized .orsion of its barycenter.

The results of | 1. Sec. V] lead directly to the following
recursions for the prediciioin Crror veetors:

Theorem 3.1: The prediction error vectors E,  and F,
satisfy the following recursions, vhere the k, are the re-
flection coefficients for the process ¥,

FRANSACHIONS ON SEGN AT PRE-CESSIAG vesb D N o 2060 s

For neven:

k., I A UF , {36
f' 1 ; { .

F,, ; i k, o (3
L v,

Fornodd. n > |-

CEL ‘

[‘-'/,r: ; . - I\.,(',. ’ W (3 ¥i
| E .

: f‘:, {
,'! w = Fz, R kU E ! 1349

while forn = VF, jand FE, | are scalars sunsfving (2181,
{2.19). Here the reflecrion coefficient sequence &, is cal-
culated from the correlation function, v, of Yo uccordiny
10 either the Levinson or Schur recursions described in
Seciion 1.

Proof: Equations (2185 (219 lor = 1 are ox-
actly [T, egs. (3171 (3. 19]. As indicated previously . the
remainder of this result s also a direct consequence of the
analysis in {1, sec. 3 and 3], For example. from (3,161
1. lemma 4.1. 2q. (4.6}, and (3.5) of this paper. we
have the following chain of equahities for n cven:

E,=FE,  ,—~KE. ‘F. .

L.

IZ.LI: | S A’/ no
=E., | = NU.F. ., (3 10)

where N is a constant to be determined. It we premuluply
this equality by (dim E,, ,)1'. we obtain the formula
for the barycenter of £, , . and from (1.121 we sec that
N = k,. The other fonmulas are obtained in an analogous
fashion.

The form of these whitening hilters deserves some com-
ment. Note first that the stages of the filter are of growing
dimension, reflecting the growing dimension of the £,
and F, , as » increases. Nevertheless, each stage is char-
acterized by a single reflection coetlicient. Thus. while
the dimension of the innovations vector of order 21 iv on
the order of 2" . only n coefficients are needed to specity
the whitening filter for its generation. This, of course. s
a dircct consequence of the constraint of isotropy and the
richness of the group of isometries of the trec.

In [1] we obtained recursions {2.21D-(2.237 ftor the
variances of the barveenters of the prediction vectors.
Theorem 3.1 above provides us with the recursions for
the covariances and correlations for the entire prediction
error vectors, We summarize these and other fucts about
these covariances in the following.

~ e . . L
¥, derote the covaranses ar 7,

- > D
Coiroliary. Led Ly

and F, . respectively. Then
1y Forneven:

a) The eigenvalue of £, associated with the cigen-

JUN S
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vector {t, - -+ L 1] as

pp, =207 Yol RENE
where o7, is the variance of ¢, .
by The eigenvalue of Ly, associated with the cigen-

vector 1, - - O 1] s
pp = 2" a7, (3.12)
where o}, is the variance of f, .
2) For n odd:
Ypn =Ly, = L, (3.1h

and the eigenvalue associated with the eigenvector |1,

I § TS
r Ry & g, = fp o, = 2(” b :(’,.‘_. (3]4)
where ¢; is the variance of both ¢, , and f, ,,.
‘ 3y For n even:
Er.n ‘ : r’.".u >\u (»";
En = SFJI = Ccov K = J ) (315)
E‘{;‘»"-‘ n | )\nU Ei.n
where U = 117, and
Sen =%, — ko, U (3.16)
N, = (k, — Alyor .. (317
4) Fornodd.n > 1:
’ !ZE.uvl )\n-IU v 3
¥, = ] = kyo;,.. U (3.18)
t >\n -1 v EF,H -1 .
5) Forn = 1:
o= =k (3.19)

Proof: Equations (3.11). (3.12). and (3.14) follow
directly from the definition of the barycenter. For exam-
ple, for n even

A2y -\ — r
“~ €n = ] EI.N

(3.20)

from which (3.11) follows immediately. Equations (3.13)
is a consequence of [I. lemma 4.1]. To verify (3.15) let

¥

us first evaluate (3.6) at both 7 and 16" ~":

Euz ‘ El.n -1 U*
. = . - krv Fr, Y- e
E”‘,:» g E,"')n. 2y ) U*/

{3.20

The first cquatity in (3.15) is then a direct consequence
of |1, lemma 4.1] (compare (3.7) and (3.21}). The form
given in the rightmost expression in (3.15) is also im-
mediate: the equality of the diagonal blocks is due to
isotropy. while the form of the off-diagonal blocks again
follows from [1. lemma 4.1}. The specific cxpression for
Yr ., 1 (3.16) follows directly from the second cquality
in (3.10). while (3.17) follows from (3.21) and the fact
that

,""[‘“I_u |(“') 1':,,‘,-” T (“', )I = k,,ﬁ,:, i (322)

L

HRYELH

which in wen follows from |1, lemma 4.1 and 3 2]
Finally. (3.18) follows from (3 15 and (3.8). and (3 1Y)
is immediate from (2.18) (2.2

Just as with time senies. the whitening filter specitica
tion feads directdy 1o a modeling filter tor 1.

Theorem 3.2: The modeling filter ter Y, v voven by the

Jollowing. Forn even

f. .
(lf ’ ) = Stk | . 1323
‘ . N ,
where!
! 0 LU,
Sty = _ 324
-k U, T th, - AU,
kU O kU

Fornodd. n > 1:

E ..
£ o ’
= Stk,) ( ) 13.25)
L
where
I AU, 1
Sk = | E (3.26)
AU, - KU

while forn = 1:

()= ) G ) s ()

(3.27

These equations can be vernitied by solving (3.61-(3.9) and
(2.18)-¢2.20) to obtain cxpressions for £'s of order
n = 1and F's of order n1n terms of £ of order n and
F's of order n — 1. Note should also be made of the di-
mensions of the various signals and matrices in Theorem
3.2 In particular. for 1 even the two components on the
left-hand side of (3.23) are of dimensions 27 7 and

2 2 respectively. while all three of the vectors on the
right-hand side of (3.23) are of dimension 277 ' and
cach of the square blocks in (3.23) is 27 7 '-dimen-

sional. For n odd. n > 1. both components of the night-

hand side of (3.25Vare 2" ' ~-dimensional as is the F. -

block on the left-hand side. The two E-blocks on the left-
. » R A . .

hand side. however, arc 2'7 7' --dimensional. and the

In fuct, we should properby wnte S a1 since the dimension of the

hiocks depends on o oeverthefess. we choose toownite Sebo e sumplhids
the notation: this will he done evenvabere i the seguet
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four square blocks in (3.2 are 27 dimensional. We
have included dotted hines in (3.23) 13,26} o cmiphasize
tiow these mappings operate. Note also that the fiest see-
ton (3.27) of the modeting fikker imvolves only scatar
quantines.

A is the case tor timwe series, the lattice modeling tilier
of Theorem 3.2 has a scattering laver structare. An im-
portant difference here is that the growing dimension of
the prediction errors leads to a tree-like structure tor the
scattering diagram. and because of this. we find that
groups of values of Yare caleulated together in this struc-
ture. In parucular. trom Theorem 3.2 we can deduce that
if we consider a modeling filter of odd length N, then this
modeling filter can be viewed as a map fron the 2°° 7 -
dimensional input vector £, ytothe 2'° " “dimensional
set of outputs {V, iwi< N w = 0}, For ¥ even, the
modeling filter maps the two 2% = '~dimensional input
vectors E, v Ean ooy to the 27 “-dimensional set of out-
puts { Y. iwl = N w £ 0}, The case of N = 6 iy illus-
trated in Fig. 3. In this case the input vectors £, and
E. . produce the outputs ¥, for w < 0, Iwl € 6 (us
well as the buckward ertors F, and F,; . .. which are not
actually needed for the recursiony. The £ vectors of var-
ious orders propagate from left to right. while the F's
propugate from right to feft. The small black squares rep-
resent 7 ' operations and the blocks labeled 1.7 =27
ete.. perform the computations described in Theorem 3.2.
The detatls of the operation of this system, however. re-
quires turther explanation.

Let us first 1ook at the situation for # odd. in which case
each block labeled **n" performs the caleutations given
by (3.25) (ot (3.27) for n = ). For example. the inputs
to the top **37" block in the figure (which has been shaded)
are E, v and F., ., while the outputs are E, .. E,, -, and
F, 1. Note that this block is connected to the right 1o sys-
tems generating both ¥, and Y,;. bui apparently we do not
need a corresponding "3 block at 6 in addition to the
one at ¢. To understand this. consider writing (3.25) at
16"V 7 rather than at r:

Egon oy
E"" ! ’ E({w“" ' n
= Sth,) | (3.28)
E ]‘f(y ' 3 no 1
F‘I:’\“" R

where we have used the fact that forany &, 8" is its own
mverse. Note that the first two components of the output
in {3.28) are simply a permutation of the first two in
(3.25). The last outputs in these equations and beth inputs
apparently differ. Howcever, it is casily checked that the
outputs £, and F .. - -, are identical up to a permuta-
tion of the ordering of components. as are the input pair
E, ., and E.. oo, and the input pair £, and
Fo. -, ¢ tthis later fact is proved in the “"umbili-
cal femma™ of Appendix A and expressed via the “um-
bilical cords™ —dotted connections—of Fig. 33 Thus there
is actually no need to have a 72377 block at 16 as there was

TROANSA FIONS OGN SN PROEENNING Vol 5o i s 3 1wt

ab 1,or more yeneralls an a7 block atro s weld
as il /.

For noeven. the blocks fabeled 0™ pertorm the val-
culations as speaitied by 13 23 For example. the inpuis
to the top 2770 bov n the bywre wre F o0 B o and
Fooowhile the outputs are £ and £ Avam s

portant to exanune the ;jll;llﬂguu.\ computation ot g related
point. Specilically s consider cvaluating 5. 235 4t the pomt

e et

{0 -

. s i I3 !
Stk I f. . 'f IR
Y LF |

Note first that the it owsuts of (3235 and (3,294,
namelyv, £, yand Eooo 0 are i Yact distinet, and thus
Ity pecessary o mmplemient the computattion (3293 For
example. the second 277 block Galso shadedy in Frg 2
computes as onc of 1ts outputs £ Next note that the
other outputs, F,and F. Lo ob 323 and 13,29y are
not identical. However. these signals must pass through
ay ' operation before entering the corresponding
17 block. and we have already seen in our analysis ot the
odd cuse that Foooo L and £ . are identical up to g
permutation. Thus only one of these is needed tor a black
at fevel o+ 1. Thiv s indicated in the figure by o con-
necting. dotted bar between the 5 7 block immiediateds 1o
the left of pairs of even numbered blocks. with vnhy one
of these identical signals continuimg backward 1o the cor-
responding # + 1 block. For example. the two et going
output signals of the shaded 277 blocks. Fand F.
are merged in this way after the v ¥ operation on each.

Examining next the right-hand sides of «3.23) and
{3.29) we see that the first two inputs are dentical exeept
tfor a flip in the order. This is captured in the figure. as
can be seen for n = 20 where the two inputs entering trom
the feft of the second 27 block are the same as those tor
the first 277 block. except in reverse position. [ abso
not difheult to check that the last mputs F.o L and
Faoo oo o,y are wdentical up to a permutation of compo-
nents. While these signals do enter adiv idual blocks we
have again indicated that they are the same by i connect-
ing dotted bar between the 4 1 blocks immediatels to the
right of pairs of even numbcered blocks. For the case of »
= 1. the two left-going mput signals of the shaded 727
blocks. £ - and F.. o are identical and are connected
by such a dotted bar.

Figs. 4 and 5 describe in more explicit terms the data
flow and memory structure for the system of order 6. Spe-
cifically suppose that we have tinished the computations
required at the horocvele indicated with squares m Fig
4. Asindicated in the tree at the top of this figure (via
shaded bar connecting the squaresy. sets of # nodes at this
level are coupled tagether amore generally for an mh-or-
dermodel 210 T points are coupled together). The sate
for this set of tour nodes 15 indicated above the nodes' we
ha ¢ stored the sealar values of YOF, and F.oat cach node
we have stored the 2-vectors Fooand F, for cach of aa
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Fig. 3. llustrating the scattering lattice structure of the modeling filter of Theorem 2.2 tor a sivheorder madel Baeh blodh,
laheled i7" performs the computation in (3,23 (for aeveny, (325 Hornodd. > Dlor 3 270 tarn 1y The sl solid

squares denote oy

" opesations, and the dotted connections between such squares (the umbilical vordsi indicate signals ot the

outputs of these squares), that are idennical up to a permutation of components, As indicated w the top of the figure. the stenats
flowing through this system are the & and F error processes of successive orders, with the £ flowaag Tt to roht and the #75

right to feft.

Fs
[ F. F, 1
Fy F,
[Fz Fz 1 T Fz Fz 1
FI Fl F] F|
Y Y Y Y
L } | J
E, E,
Y Y Y Y Y Y Y
F, F) Ft F:) Fl Fl F:| FAl
F ks F Y b 5y i By
F; FJ F.‘ F’
F, F, F, F,
4 .
F, F,

Fig. 4. Hiustrating the propagation of state intormation for the fiter in
Fig 3 The stored information tindicated above the top portion of the tig-
ure) tor a sct of four nodes at the horocyele indicated by squires s used,
together with the nput £, vectors, to compute the (wo corresponding sets
of infonmation at the two descendent groups of tour poists at the next horo
cvele

pairs of these nodes. and we have stored a single 4-vector
Fs for the set of 4 nodes. Given these quantities and the
two d-vector £, inputs for cach of the two sets of 4 de-
scendent nodes (indicated with circles. with a connecting
bar for cach set). the model performs two parallel com-
putations (which are identical in structure) to produce the
required variables to be stored at cach of the two sets of
descendant nodes. Fig. S iltustrates tn more detatl how
these computations are distributed and pertormed. Here
at each level the variables required as inputs are indicated
with "7."" while those produced as outputs are indicated
with **!."" Furthermore those inputs corresponding to the
stored state are indicated above cach laver of the com-
putation. while below cach figure we mdicate the inputs
received externally (7E,) or from previous favers (all other
PE7S). We also indicate below cach laver the outputs pro-
duced. some of which (the 'F's at layers 2-6 and the '}s
at level 1) form components of the state at the next horo-
cycle while others of which (the 1E™s) are used as inputs
by succeeding lavers. For example, at the top level Fooas
stored und two F, vectors are received as the only external
mputs, This laver. as shown i Fig. 3. has two actual sets
ot outputs. One of these, the F, vectors, is not needed for
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Fig. S, IHustrating the detaited computational flow for the propagation of stite information tor the filter described n Figs, 3
and 4.

the subsequent computation and indeed is typically not
computed in lattice implementations. The other outputs
produced are the E5 vectors which will not be stored as
part of the state at the next horocycle but which do show
up as inputs to the layer 5 blocks.

We have also included node indices in part of Fig. 510
make 1t easier to connect the computational structure of
the figure with the computations described in (3.23)-
(3.27). For example, the lower feft-hand portion of layer
I (distinguished by shaded circles and ¢ ires) corre-
sponds to the pair of computations corresponding to (3.27)
evaluated at 1 and at r6. Also. at higher layers, we en-
counter vector error processes, and as we have seen. these
vectors are not distinet or, in fact. needed at all nodes.
For example, consider the portion of the layer 5 compu-
tations indicated by shaded squares. This describes the
computation of (3.25) tor n = 5. which requires a single
E5 input at node 7. a single stored Fy vector at ry ' and
produces one £ vector at node £ and two £y vectors at ¢
and 16" Tn this case. as we have pointed out. a single F,
vector needs to be stored for the puir of square nodes con-
nected by the sohid bar in the figure. We have indicated

its index 1y "' in the center of the bar. Similarly. the index
1 of the single £ and Fq vectors is indicated in the center
of the lower solid bar, while the indices, 1 and 16", for
the two E; vectors are indicated above the appropriate
portion of the solid bar. Note that the apparent redundan-
cies. indicated by the shaded bars in Fig. 4, are not pres-
ent in Fig. S_as in this figure we have shown just those
variables required to be stored and computed from horo-
cycle to horocycle.

As we wil) see. understanding the structure of the filter
described in Figs. 3-5 greatly facilitates our anabysis of
stability.

B. Levinson Recursions for the Normalized Residuals

The prediction errors £, , and F, , do not quite define
1sotropic processes. In particular, the components of these
vectors representing prediction error vectors at i set of
nodes are correlated. Furthermore. for n even we have
seen that F,, and F..oo | are correlated fsee (3. 150,
These observations provide the motivation for the nor-
malized recursions developed in this section. In this de-
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velopment we use the superscript * to denote normahzed
versions of random vectors. Specifically, X* = ¥ ' "X
where £, is the covariance of Xand &' 7 is its symmetric.
positive definite square root.

We now can state and prove the following.

Theorem 3.3: For n odd the covariunce matrix 2, de-
fined in (3.13) is invertible if and only if —1 < k, < 1.
For n even, L, as defined in (3,15}, is invertible it and
onlvif =1 /2 < k, < 1. Under these conditions the whir-
ening recursions of Theorem 3.1 can be normalized,
vielding the following recursions for the normalized re-

siduals:
%®
El. n o >
=%
i

For n even:
U,
kn . Fl', nel
Uy

Efvany U\ ., |
* =k, E:n | ‘
Fl, e U*

(3.3h

- (3.30)

Ff, = 0k,

where © "' (k,) is the matrix square root satisfving”

5 [ - A;:L,* (kn - I\r:i)ljv*
O "k, = . . .33
(kn —k;)* I_l\r-ar /

1J

Fornodd. n > 1

EI.H'—| *
Er"_‘n = e(kn) - an*Fl*, Yon 1
E,‘gw‘ g
(3.33)
. *
Fl*.:n = e(l‘n) FI*7 LT kHU* -
R N
(3.34)
where
0 (k) =1 - kiU, (3.35)
Forn=1:
1
Efy = === (Y} - kY5 ) (3.36)
.1 \/] ” k] ! i i
F” = (Y’,’ Band I\', Y! ) (317)
[

Remark: Note that for n even we normalize £, , and
Eso o, together as onc vector. while for #n odd. F,, is
normalized individually. This is consistent with the na-
ture of their statistics as described in (3.15)-(3.19) and

*Agan. to be precise. we should write Ok, m) rather than O (4,1, For
simphoty we use the less cumbersome potation

IR

with the fuct that forneven dim F o, = 2 dim Fo L while
fornodd dim £, = dim £,

Proof: Letus first denne 3300 (3 37) assunnng the
invertibility of T, for cach . This result s o relanvehy
stratghttorward computabion piven (3 11 3 19
even we begm with (3.7 and 3 21 and premultphs cach

by

Bor n

dwg (X008 T
Since Tooas an cigenvector of U000 Y0 und thereton

L7 commuie with UL This mmicdiately vields 03 30
and {3.31) where the matniy Odh s simply the invernse
of the square root of the covariance of the tern i brackets
i (3.30) and in (2.3 (the equalinn of these covarimees
tollows from (3150, Eguation (3 32y then tollows trom
(3. and (3.15), The case of 2 odd mvolves an unalo
gous set of steps. and the o= 1 case s immediate.

The preceding analysis provides us both with the con-
ditions for thenvertibibty of B and with a recursive pro-
cedure tor caleulating X, 7 7 tsee [ appendin D} tor an
alternate ethcient procedurey. For nmeven we huve

S0 = Otk diag X, LTy AN
while toran odd. n > |
R S T W M 330,
and forn = |
NS . |
g =Wl - Apirgd (3.4

Note first that from 3,400 we see that &, must he Jess
than 1 for £, ' " 1o exist. Forn > | wid odd. note that

the only nonunity cigenvalue of 7 - AU s b - AL and
thus © (&) exists for n odd i and only 1t A0 < 1 Al

in this case we can readily compute O (A, 1 using the tol-
fowing formula. Forany 4 > -1

. ] \ .
U kU =1 ( S B AR TY
N1 o+ & :
For # even. we make use ot the result that tor S and 7
symmetric
DN AR S U e S
= ) (340
T S A Y X+ ¥
where

X=(§+17y '~

Y=( -1 "' (343

Using (3.42). (3.4 we see from (3.32) that to caleulate
O (k,) tor n even we must calculate

(o + th, ~ 2kl '
and

N

- kU -

which exist ifand only #f ~ 172 < &, < 1.
our proof.

completing




fodd

Itd, = 120 L forneven ori, i1 for noodd,
the resulting error procasses are not full rank. This is the
simplest example of a stagular process. tor which pertect
prediction of ¢ lincar combination of Y 5 ona given horo
cycle can be obtained usiag onty o tinite set of vatues of
Yon Upast”” horacyeles. Ir Section IV we will character-
1ze the tull class of singular processes in terms ot i in-
finite reflection coethicient sequence.

Now that we have a normalized torm tor the residual
vectors, we can also deseribe the normalized version of
the modeling filters which provide the basis for generating
isotropic Y)'s specitied by a tinite number ot reflection
coefhcients and driven by white noise.

Theorem 3.4: A normalized modeling filier for the iso-
tropic process ¥, exists if und only if —1 < &, < | forn
odd and — 172 <k, < | for n even. In this case. this
Sfilter hwas the follonving form. For neven we have

. /E,, \
5 E:*n H 1 ( o ) 1
; & f = “':”“z) Fr!w I (144)
1] F.’,’l k —~ M l
,f, [T l
where'
I+ atk ) Uy
k, .
Stk = f o S Uy
dtk YU,
with
e
alky = e vl -1 (3.46)
A5 %1
btk = - 3 vio- & (3.47)
VU + 2k - (1 + k)
2
O (k)
ik, =
-k, U, 1
Ok,
-k, U, O
detk) = —ctky - k. (349

The matrix E(k, ) ix referred to as the scattering marrix,
and it satisfios

Lk L (k)

i

{3.50)

"Again we shotten the notation and write Stk ) rather than L ik, #i

LEEE TROANSIC TIONR 3N SHON Y PROEFSNING Nl 0 N s

A1 NT e

Fornodd, n + |
A k./ o "
( ) 1 :
v E, o = Yk o3 AN
! FT .
Kl | |
H‘/I('I'(' ’/H' \('(l”('l'!rﬁg‘ Ndiriy
ST R O AU U O O ~
Y - ( \) (352
-k U, o kU
Natisfies
Yhor oy = (337
Forn = 1
¥ E”
I B S ) t3 5
\ }";' 1/ ) /
and
AR S S \
Lthpy = ) ‘ (385
Lk, N SRR S
bk U, kU, \
I+ kU, b, 13135
k, .,
5 U, |+ ath U,
also sarisfies
itk = L (3.56)
Proof: We o begin by solving (330 for
(EXD o EED ) then by substituting this into (3.3 1)
we obtain
(1‘.‘;‘,, : ) * l ([‘f . )’1
EX = YA \E. i (3 57)
E FLooo
where
U,
A,
L, _
(3.5%y
] Y SR Y &
O Tk, Otk . )
I -k U,

To obtwin the desired relation, we simply drop the cal-
culation of EX. | from (3.57) To do this explicithy
we comider 1A, as a matrix with three block columns
and four block rows (one cuch for E7, yand £5. -
and two for F¥). Thus what we wish to do 1s to drop the
second block row. A carcful caleulation using the rela-
tions dertved previously vields (3,45 249y, That Lk
satisfies (350 follows immediately from the fact that the
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vectors on both sides of (3.44) have dentity covariances.
Tae result for wodd. n > 1 is obtained in a simitlar fash-
ien, and the case of = 1 s pnmediate.

V. Reptrction COrFRICIENTS AND THE PROPER LIES OF
Processts asn Mobrers

The analysis in {1} and i the preceding sections pro-
vides us with a framework in which we can say a great
deal about stochastic processes and dyvnamic systems on
trees, Inothe first subsectior we provide a complete char-
acterization of isotropic autoregressive processes, and in
Subsection IV-B we characterize purely nondeterministic
processes. [n Section 1V-C we relate the stabihity of the
fattice models on trees to the reflection coctlicients. whike
i Section V- we show that all lattice tilters with ap-
propriately-constrained  reflection cocthetents vield AR
processes. showing the one-to-one correspondenee be-
tween these hlters and processes. In cach case there are
similarities 1o the analysis for stationary time series.
However. the more complex structure of the dyvadic tree
leads to some important and substantive ditferences,

A Characrerization of Autoregressive Procesyes

A well-known and essentially trivial result for time se-
rics is that it Y, s a pth order autoregressive process. then
the reflection coetlicients &, are O forn =z p + 1. Fur-
thermore. the pth-order forward and backward prediction
errors. which are alsoidentical to the ath order prediction
errors forn =z p o+ 1 form white noise seqguences. The
following result. which states the counterpart of this re-
sult for 1sotropic processes on trees, requires some pret-
atory comment. Specifically. thanks to the vector nature
of our models.r.e.. the fuct thay a group of Y's ona given
horocyele are generated together from a group of the £7s,
the prediction crror processes whose whiteness we con-
sider consist of sampled versions of the (normalized) F
and F processes, with one ““sample™ taken per “group.™”
In particular. from our discussion at the end of Section
HI-A and {r i the detinition (2.8), (2.9) of F, .. we find
that the components of E,, and £, ,, are permutations of
one another it w & 0 and tw) < n — 1. Thus we need
only consider one of these vectors for each group on cach
horocycle. Note that this means that we are choosing only
onc out of 21 1 error vectors, but cach vector is ex-
actly of dimeasion 2" 7 -1 5o that we do have the cor-
rect number of total degrees of freedom. one per node on
the tree.

Turning to the backward residuals, we find from the
discussion in Section Hi-A and the detinttion (2.6). (2.7
ot £, that the compenents of F,, and F,, , forw <
and jwl = # - 1 are permutations of one another. On the
other hand. as pointed out (for w = & * in Section
HI-A L if nis even. so that it is possible to find w < 0
with [wi
components. Furthermore. it is castly checked that these
vectors are not uncorrelated. However, as is also pointed
out in Section HI-A_the sigmals £, Jand P ., do have

Sforms a stundard white noise process, wiile for n =

n. F, ,and F,, , do not have identical sets of

wdentical component sets. and 1t is only these “delined™
signals that play a role 11 the modehng filter. Thus torour
purposes here we need choose anly one vecror from the
set 4F, ow o 00wt s nbl Inthis case we are choosing
one 27 Cldimensional vector from a et ot 27 sech
vedtars, azain producing the correct number of degrees of
trecdom.

Finally . as we have noted wm Section HEBL it s neces:
sury to normalize the prediction error processes. For e
backward prediction errors, this simphy means that we wild
consider the F7, rather than the £, Simlarty tor 1 odd
we consider the £, However for neven our nomudiza-
tion involves the combimed normalizavon ot £ and
Eo.ooo te.goorelerning to Frg. 30 the tvo mputs £ and
F,.. o are normalized together . Thus for z evens imsteind
ot choosing one vector from (£
IWHE, . L ow S 00w <= 0= 1 we choose one vedton
(ot twice the dimensiony from

w T O, wlo= o

H

( FE. AT !
‘ k ) ) w2 00w € - |
2

S wad

Proposition 4.1 1f Yo iy an ARy Dvotroplic process.,
then the reflection coefficients &k, are O for oz p o+ |
Furthermore, the forward and hbackward nosnmialized pre-
diction error vectars of order pand greater form siandard
white noise processes {ioe.owith wunity covariances. Maore
precisely let v, be an arbitrars node an the iree.and con-
sider an infinite sequence of predecessors and seocessors
fer 150

Ch =0 U fath o2 1
Then for any n = p, the sct of backward predicrion ervor

veorars

FL o beelj»

forms a standard swhite noise process. Similariv. forn =

pand odd, the set

po

25

O -
(ﬁf.‘;;,_ el >

Y

and even. the vet

S( vel., >

(NELy 2

N

]
!
i
\

forms a stundard white neise process.

The construction of [and the choices of points forming
the sets of prediction eriors i proposition 4.1 represents
one particular way of choosing one prediction error vector
from cach of the sets deseribed betore the statement of the
proposition.

Proof of Proposition 4.1 We focus explicitdy on the
£ as an analogous proot holds tor the £75 Note firs
that, thanks to the normalization, all of the £ vanables
do have unity covariance. Abso. thunks o the sampling
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done in formimng the £ % sets, s straightforward to check
that the whiteness will be proven it we can show that for
n z pand cither even or odd) the unnormalized predic-
tion error £, , i uncorrelted with £ L idenoted £, L
E, forw < Oand forw © 0, 'wl > n.

Showing that this s true tor w < 0y onsentalhy the
same as the proot in the time series case. Speaitically | it
Ak, = Oftorn = p, then,

[“':,_‘m = f MU iwam > I
(g )
- : [:! N 1 R
E oy = - | i 2m o=z p 3.
i km et
so thut, 1 = p.
["‘.' . 4 ‘y:g L ox t4.21

by definition of the torward prediction errors. Hence tfrom
(2.9) we see that for n = p,

[-‘.1 3 4 1{!\\ I forw < {), (4})
Hence it remains to prove that

. R . ) n

E. L Eg ,  forj> (4.4

This proot, which involves the construction of isometries
much as in several of the proofs in [1]. is sketched in
Appendix C.

For a time series model the constraint of causality se-
vercly restricts the suppont of its impulse response. For
example any AR time series model has an AR impulse
response whose support 1s the nonnegative integers. For
processes on trees, however. there 18 considerable flex-
ibility in the possible choice of support for a causal im-
pulse response. However. as the foilowing states, the
constraints of isotropy allow us to determine precisely the
support for AR models.

Proposition 4.2: Let Y, be an AR ( p) isotrapic process.
Let us write the formal power series P, defined in (2.24)
as
4.5

Ifp=0p, =0ifw=x01Ifp=1.p, = 0unless w =
vy Yforsomek = 0 Ifp = 2. then p, = 0 for all words
of the form w = 5y *8w, , with

ip
and fiw 1 > %

w,, € {a. 3} -1 4.6

In other words. P, has its support in a cxlinder of radius
[ p/2) around the path §~ Y toward oo, From this we
also have that the modeling filter of an AR ( p) process
has its support in 1’ same cvlinder of radins | p /2]
around [t, —~o) = {ry 'k = 0}. Converselv. anv pro-
cess such that the modeling filter has its support con-
tained in the oxlinder of radius ¥ p/ 2} is necessaiiiv an
AR (p) process,

Comment. The proot of this result is straightforward,
although tedious. and is left to the reader. Fig. 6 illus-

PRANSAMOTIONS ON STONAL PROCESSYING YO 30 N €0 AT od s by

{

P 6 Hustiating the ovhinder of rdios Gispport o AR o1
hnor. o hader of radius Toupportot AR 2 AR :
shaded Binesy, and ovhnder of nadiuy 2 caupport o AR 30 AR S dan

sobid. gras shaded. and dushed e

otk v

trates the ovlinders for tow order AR proacesses. Nowe that
proposition 4.2 18 o generalizanon ol the result w11, ap:
pendix Al which states that if an isotrapic process has s
support concentrated on fr. - o) then s necessarnthy
AR (h.

B. Characrerization of Regalar (or Purdly
Nondeterministic) Processes

Definition 4.1: We shall say that an isotropie process
Y. ix regular or purely nondeterministie if

g’ >0 (4.7
holds, where
N . “ N 5
U’T‘lﬂtfi(.:_,u,) }
H\weu /
- K (( IS Y. ) YN 4.8

and the infimum ranges over all collections of vealars
{ia )y =0 where emiy finitely many of the g, are nonzere
and the condition Ly, = 1 iv s tistied.

In other words, no nonzero lincar combination of the
values of ¥, on any given horocycle can be predicted ex-
actly with the aid of knowledge of Y in the strict past.
Y, « » and the associated prediction error s uniformh
bounded from below. We shall now characterize regular
processes n g tairly simple way using reflection cocthi-
cients,

Theorem 4.1:§) The following fornudas hold jor cvery
[SOIFOPIC Process:

~

a” = liminf N85 )) 4.9)
Aml(“:.‘n‘|) = rH(I - k;}/‘lll (r - /\:13’
cmin {1+ Ay - 2kl - ksl dl )
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where Ny (A) denotes the smallest eigenvalue of the mu-
trix A, and Ls,, , i is defined in (3.13).
i) An tsotropic process Y, is regular if and onfy if irs

reflection coefficient sequence is such thar ik, .0 < 1,
1 < ks, < +1, and furthermore,
x
2k, k) < . (4.11)
noal

Comment: The corresponding characterization of reg-
ular processes in the case of tme series is (¢t for in-
stance, {2]):

x

k.l < 1 vn. 2k < o, .12
-1

i
Proof: Note first that the singularity of the process
if ks, .} = lorifk, = —1/2 or 1 follows directly from
the resulting degeneracy of the prediction error covari-
ance (Theorem 3.3). Condition (4.11) of point ii is an
immediate consequence of point i. since for k small m:n
(1 ~k. 1 +k—=2k%) ~ 1 — |kj. Thus we shall only
prove i. First. let us prove (4.9) by showing that o is
both = and =< the right-hand side of (4.9). With every
{#. ) o0 as in definition 4.1 we associate a sequence of
vectors (M,) of increasing dimension. Specifically. we
begin by forming an infinite-dimensional vector by order-
ing the p,, according to the ordering on the w < 0 defined
in {1, sec. III-A}. For each n we then take the vector M,
to be the truncated version of this infinite vector by keep-
ing only the initial segment consisting of those g, 's such
that w is invoived in the definition of E, », . ;. We then set
M, = M, /M, if M, # 0. and equal to some arbitrary
unit vector otherwise (here. |l Il denotes the usual
Euclidian norm).
We obviously have

M, = M,. tor n {arge enough. 4.13)

Hence, thanks to the limit theorem for square integrable
martingales [8]. [9]. we can write, for the considered
family ()

|

2‘:‘ M, Yln - E( Z 138 an 1 (yl‘, ‘.2::)“
) w0

ws -~

H Z Ky Yln - E( 2“ Au'\vyfnl(y[-, ',oe)

w o w e

lim

noex

1l

il

. T
lim nLZn' IMn

n X

s

= lim inf MNo(Eay . )

n v

4.14)

where the second equality uses (4.13). and the inequality
is due to the fact that M, is a unit vector. Since the last
expression in (4.14) does not involve the considered fam-
ily (u,.), we immediately get the inequality = in (4.9),
Now, fix € > 0 and select n, large enough so that
Api(Zy, .13 — ¢ is smaller than the right-hand side of

Pram

(4,93 Then, tuke tor M, wumit aipenmvector of Lo, us
sociated with sts smadest erigemvalue. We then obirm foi
lowing inequalities which, since o s arbitrany . vields the
mequality = in (3 9y

hmoant A, (8. .00 v ¢
L7 4
=20 WD

=ML M,

I . ; . .
IEDIRTE SRR O B S

i

=

G
where (u, 1 is the family associated with A
It remainy o prove (3 Tth, Using (3385 (3 Hhowewan
wrnte
SN il

f':‘n‘f I:K = t)(“fu~!)()(l‘_"’ ( N ‘ .o }
’ .0 VAN

But the three matrices vn the nght-hand side of this tor-
mula all have the Haar system as eigenvectors of |1 oy
(4.19)]. Hence we can diagonalize all of these mutrices
simultancously:

AT = A0 A0

<.\(L:;.;" A 0 \
‘ 0 AT ,)

holds, where A (A4) denotes the diagonal matrix of the ¢
geavalues of A. Using the defimtion of O 'k, yin (3 320,
{3.35), we can deduce that

AEs, . ) =diag (1 = &5, 1 -+ D)

< diag (1 + ks, —~ 2k,

(A(E:,, ) 0 )
0 A, 0

so that. by expanding the product and using (2.36). we
finally get (4.10). This finishes the proof of the theorem.

Note that the condition (4. 11 15 much more easify vi-
olated by a valid reflection coetlicient sequence than the
corresponding expresston (4.12) for tme scries. poisting
to the fact that there is apparently a far richer class of
stngular processes on trees than on the real line. This s
apparently related to the characterization of speetral meu-
sures for isotropic processes and to the farge size of the
boundary of the dvadic tree (see the comments concerning
11, eq. (2330,

l"’i\?,b - b

C. A Stahility Criterion

A well-known result for all-pole Tattice fitters 15 that
such a filter is stable it and only if all of the reflection
coeflictents have magnitude fess than 1. In this section we
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state and prove Theorem .20 which s the counterpart of
this result tor the lattee tilters mtroduced in this paper.
Betore stating this result, et us clarify what we mean by
“stability . Figs, 3-5 depiet (for a sixth-order example)
the structure of the unnormalized tilter. This niter de-
scribes how the computation ot }, propagates from horo-
cvele o horoeyle, with £, (fornoddyortk, 0 K- o)
(for n even) as input and the corresponding block of 17y
on the same horocycle as output. It is the stability of this
filter that we wish to study .
Theorem 4.2: Under the conditions

-1 < &, <} nodd } s n = N .15

}

-y <k, < nevenl =0 s N 1,16y

the Nth-order unnormalized modeling filter specified by
(3.23)-13.27) is stable. so that ¢4 bounded input E.  ( for
Noddior (B, . E v o ) for N even) vieldy ¢ bounded
owput Y, Similariy. the normalized madeling filter spec-
ified in Theorem 3.4 is also stable under these conditions
so that a bounded input EX ( for N odd) or (E. .
E. . =\ ( for N even) vields a bounded owput ¥

Proof: Let us first show that by taking advantage of
the structure of the filter computations we can simplity
the required analysis and can, in fact. reduce it to a ques-
tion of stability analysis for a standard temporal system.
To begin. in Fig. 7 we have depicted one of the two par-
allel computations depicted in Fig. 5. where we have used
notation that emphasizes the sequential nature of the com-
putations. Here the indices “m™ and “'wt — 177 index
horoeyeles so that the “m — 177 quantities are stored and
the " quantities are computed from the input (£, (m).
E.-(m)) which is distinguished by a solid box at level 6
in the figure (note that the reverse-going output from this
final fevel. F; (m) is distinguished by a “dashed box). The
subscripts for the signals in Fig. 7 code the various error
and output processes at each level. The first subscript for
the E and F vectors indicate the order of the error vector.
while the second subscript {(and the only subscript for the
Y's) indexes the vectors along a segment of a horocycle.
The precise correspondence between the normalized ver-
sion of guantities in Fig. 7 and those in Fig. § can be
directly determined by matching up signals and node in-
dices in Fig. S with signals and horocycles index (m and
m — 1)in Fig. 7. For example.

Yio Yiso Yoo Yipns © Yi(m), Yo(om), Yotm), Yitm)

Yo oo Yo, v = Yim = 1), Yot ~ 1)

T

Foo Fioey o Fy, Fuom

I';,A,;. E,;,r)-v,g hnd (E“()n). [':43“"))‘

As we emphasized in Section HI-A. and as iflustrated
graphically in Figs. 3-5 and 7. each stage of the compu-
tation is pyramidal in structure. For example, the state of
a set of nodes at a given horocycle, together with the n-
puts. provide the state at two descendent sets of nodes at
the next horocycle. Since the computations in generating

tit

PROANS W DTONS N NN PRGE PSS Vs e e s

cuch ot these descendent sty are sdentical m structuine
we need totlow onls one ot these paths i order tooes
amine stabithty - For examiple. tor cur sivth-order ¢
ple. we need only establish stabihiy of the dy names trom
input tF, . By to Y om o Yoo Yool
However, we can take this considerably tanther In par:
ticular, because of the pyramidal symmetries, we need
only consider the stabihity of the map trom of,
E.-tmy) w0 Yooy as the structure of the map (o Y oon
Yoo, and Yoo are wdenucal, More goneraliy L starung
from any node 7, on the tree. we need only consaider the
stability of the dynanues mvoived mogencerating (Y n
= 0}, since the dynanues for any other path from horo
cyele 1o horoeyele has dentical structure.

Using the notation of Fig. 7.
examine the stability of the system hiustrated i Fig 8
tor the sixth-order case. where the sndl ~olid squares now
denote standard - operations i e -
1. Here the St matrices are esacthy s detined n
Theorem 3.2, We can now apply standard tme domain
methods 1o this system”

Note first that under conditions 4. 15 (4.16). the
Ok, ) matrices defined i Theorem 3.3 und the covan:
ance matrices ¥, are invertible so that we can equivalentiy
study the stability of the normalized form of the modehing
filter. Note also that checking that o ssstem tunction Hio
has all its poles strictly inside the unit circle i equinvalent
to checking the same condition for the system tunction

[XZIRN]

[EIIAN

we now sed that swe muast

Aty = oum

H(z7). Thus to test for stability we can modifs the system
of Fig. 8 bv adding a unit delay i oveny Jeft-1o-night-

going path. and by replacing the Stk 3 blocks by the scat-
tering matrices L ¢k, ) ot Theorem 3.4, For example. in the
sixth-order case we can equivalently cheek the stabihity of
the system in Fig. 9. Recall that for an Nth-order filter we
proved in Theorem 3.4 that

ShVEh =L i=1.-- N 17

for any set of coethicients k.« - - . Ay that are reflection
coctlicients of same isotropic pracess. But the entnies of
the matrices Sk Seky — Loio= 1.+ -+ LN are rational
functions of the &,,"s that have no poles insde the domain
specified by the conditions (4,151 (4. 161, Henee we muay
use the Lemma C.2 of Appendix € to extend the property
(4.17) to the whole domain specificd by the condinions
4.15). (4.16).
Using (4.17) and the notation of Fig. 9 we have that

EomyiT o+ iy o
=4E - D e iy o - D K
where we have the boundany conditions
Ev . m = uiny 4. 1M
aodmy = Eoum - 1) 3 24

To study stability we set wimy = 0 and define the follow -

W owould ke o acknowdedee B C
proot

Levy o supgestine this hine of
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ing positive-definite function of the state of the system
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W ime i

[
("Fél(w)
TFar(ml)
5
("Ea(m)) K51 () !Fs(m) ('Eax(mm)
1)
- m
7Eqi{m) ‘Fa(m) TEaxm) 'Fay(m)
CEya) ({Eq(m))
TF21(m 1) TFxmr 1)
B (m) Fy(m TEaxm 'Fyim)
('Fay(m)) (Ex(m)) ('Exa(m) ('Ea{m))
(1) Hixm )
“Ei(my EaAm) 2Exa(m) 7E24(m)
'F21(m) F2Am) Faslm) !F24(m)
(*Ey(m) CEym)  (Ep(m)}  (Eje(m)
¥ (m1) Ao}
1
TE (m) TE1dm) 7E13(m) TEa(m)
'Fy(m) Fy(m) IF 13(m) 'Fis(m)
Y (m 'Yo(m) 1Y +(m) 'Ya(m)

Fig. 7. illustrating one of the two parallel. sequential computations for the model of Figa 2.3

{lq:(m), Egpim)} Esiim) {Eqr(m), Eqa{m)} Eyfm) {Eqi{m). En{m}} Eqndm) Yiim)
Sike) Sfks) Sika) Siks) Slky) Sik) |
e —Be - e -
Failm) Fsj(m} Fai(m) F3i{m) Faim} Fiy(m)

IHustrating one computational path front horocyche to horocycle. It is this standard time domamn system whose stahihin
is cquivalent to that of the unnormalized modeling hlter.

m} = §{mj

Eelm}

Esim) Sifm)

zikl}‘

Sam)

Em) £4m)

Z{ke) {ks) Elk) Elks) Z{ka}

nis{m)

im)

Ndm)

Tiel m) ngm) -';xm) ol m)

Fig. 9. Equivalent system whose stability is investigated in the proot of Theorem 4.2

D. Every Finite Family of Reflection Coefficicnts
Defines an Isotropic AR Process

AY
Vimy = 22 [g,omli* + fn, (omll°. 4.2h Our analysis to this point has shown how to construct
¢t . R .. . .
a sequence of reflection coefhicients {4, from an iso-
Then from (4.18)-(4.21) we obtain tropic covariance scquence {r,}. Furthemmore, we have
seen that the {&,} s have particular bounds and that if
Vim) = Vim = 1) = = [ny(ml*. (4.22) ik, g p

{r,} comes from an AR (p) process. only the first p of
the reflection coeflicients are nonzero.

It can be readily checked that the system is observable
from ny(m), as long as (4.15) and (4.16) are satistied. so
that ¥(m) is a Lyapunov function proving asymptotic sta-
bility.

The following re-
«ult states that the converse holds, i.e.. that any finie &,
sequence satisfying the required constraints correspands
to a unique AR covariance sequence. This result substan-
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tates our previous sttement that the retlection coeth-
cients provide a good parameterization of AR processes.

Theorem 4.3: Given d finite sequence of reflection coef-
Setens k. V= no< posuch thar

{ .
g -5 < k, < | for n cven

j (4.23)
(=) <k, <

for n odd

there exists a unigue isotropic covariance sequence which
has ay irs reflection coefficient sequence tire given &, fol-
lowed by all zeros.

Proof: Consider the modeling titter of order p spec-
ified by the given set of reflection coetlicients. What we
must show is that the output of this filter v, is well detined
(i.e.. has finite covariance) and isotropic when the input
is a standard white noise process, That it is well-defined
follows from the stability result in Theorem 4.2, Thus we
need only show that v, is isotropic. More speciticatly. let
{s. 0 and (s'. ¢') be any two pairs of points such that
d(s. 1y = dis’. 1"). The theorem will be proved if we can
show that the function

DK = (k) opsp = ECxv) — ECy vy (424

15 identically zero tor all &,"s satistying the condition
(4.23). But the formulas for the modeling tilter (Theorem
3.2) show that & is a rational function of K which is an-
alytic inside the domain specified by the conditions (3.23).
Also ¢ 15 identically zero for all sequences K arising from
valid isotropic covariances via the Schur recursions
(2.26)-(2.31). Then the theorem is an immediate conse-
quence of the Lemma C.2 of Appendix C.

V. CoxcrusioN

In [1] and this paper we have described a new frame-
work for modeling and analyzing signals at multiple
scales. Motivated by the structure of the computations in-
voived in the theory of multiscale signal representations
and wavelet transforms. we have examined the class of
isotropic processes on a homogenous tree of order 2.
Thanks to the geometry of this tree. an isotropic process
possesses many symmetries and constraints, These make
the class of isotropic autoregressive processes somewhat
difficult to describe if we look only at the usual AR coetf-
ficient representation. However, as we have developed.,
the generalization of lattice structures provides a much
better parametrization of AR processes in terms of a se-
quence of reflection coetlicients.

In developing this theory we have scen that it is nece-
essary to consider torward and backward prediction errors
of dimension that grows geometrically with filter order.
Nevertheless, thanks to isotropy. only one reflection coef-
ficient 15 required for cach stage of the whitening and
modeling filters for an isotropic process. Indeed as shown

in [1]. 1sotropy allowed us to develop a generalization of

the Levinson and Schur scalar recursions for the local
averages ar harycenters of the prediction errors, which
also yield the reflection coefficients. In this paper we have
justified our claim that the reflection coefficients are a

PRANSAUTIONS 00N SEON AL PR SSRGS vy R O N S O B

Fig 10 A samiple of an AR 3 process wha wivon Borocaie

good parumetrization for AR processes and isotropic pro-
cesses in general. In particular we have developed whit
ening and modeling filters for AR processes that can he
completely specitied in terms of these cocthicients. In ad-
dition we have shoan that there is o one-to-one corre-
spondence between finite reflection coetficient sequences
and AR processes. have characterized the stabiliy of lat
tice filters in terms of the reflection coctlicients and huve
shown how the regularity of an isotropic process can be
characterized in terms of it reflection coetlicient se-
quence.

This work represents one part of 4 larger effont to de-
velop a theoretical foundation for multiscale statistical
signal processing. In particular in {10] we investigate a
weaker notion of multiscale stationarity which leads o a
state space and system theory for multiscale modehing and
a corresponding methodology for scale-recursive optimal
estimation which accomodates very naturally the fusion
of data from sensors with different resolutions [3}-15]. The
multiscale AR models developed here as well as the state-
space models of |[3]-{5] are particularly uscetul for mod-
eling and analyzing signals displaving fractal-like or self-
similar characternistics. For example, when restricted toa
given fevel of resolution. a sample of an sotrope process
can be drawn like an ordinary signal. We show i B, 10
a sample of an AR (3) process with hy = k. = Ay = 0.99.
Figs. 11 and 12 show approximations of this signal at suc-
cessively coarser scales using the multiresolution analysis
via wavelets of Mallat-Daubechies, as presented in [7).
These approximations display the self-similar statistical
characteristics we expect of this class of models {see also
the thorough development for so-called 1. f~processes in
PHE]. 1129y

There are several promising directions tor turther re-
search building on our formalism. In particular. an essen-
tial topic for investigation is the development of methods
for constructing isotropic AR models directly from data
as available 1in practice. This requires identifving multi-
scale structure and ostimating isotropic covarnance sc-
quences from data restricted to a single seale e a sin-
gle horocyele [6]. In addition. we expect that these models
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Fig. 11. The Mallat-Daubechies multiresolution approximation of the sig-
nal of Fig. 10.
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Fig. 12, The Mallat-Daubechies multiresolution approximation of the sig-
nal of Fig. 10. continued.

should be of value for segmentation of signals. and. in
two dimensions. for the identification of textures. based
on differences in multiscale characteristics. The scale-re-
cursive structure of the AR whitening filter should facil-
itate the calculations of likelihood ratios much as in or-
dinary time series analysis. Work in these areas. as well
as on several applications of our theory, is proceeding and
will be reported in the future.

APPENDIX A
UmsiLicaL LEMMa
We shall use the following notation:
wY, =¥,

where w is a word. Note that we have
I‘Ylu = ylwl' = wzv}’,,

Furthermore, in the sequel. {g] denotes the greatest inte-
ger smaller than ¢. and we shall write. for short, 8! in-

stead of Y. Using these notations. we hive the tollow
ing result.
Lemma A 1 For each n, the following foroudas hold.

Y S LA up o i permutation
Proof: Recall that, tor w < 0. 'ni = n
Foony = Y, - E(Y., Y.
whence
v CFL ey = Y RO Y

and
y T Fp 00

= Yoo o BEY Y, pod

so that, to prove the lemma. it s ¢nough to show the fol-
lowing formulas:

wl = now = 8" " e = = (A
wls - Low =8"" "= w201

(A2

Proof of (A 1): Setw = &' 1 + 24 = n. Then

w'o= 5 tAL3)

where v, = max (v. 0. To prove (A Dy it sutlices to ver-
ity that

holds in (A.3}. which amounts to verity that n = [(n -
1y/2] + k. and this is a consequence of the inequalities
k< [n/2}andn = [n/2) + |in — 132}

Proof of (A.2): Againsetw =5 8% 1 + 2k < n
— 1. Then w' = 8" " "Iy Now if k = {(n -~ 1 2
-~ (holds. then (AL2) follows, Otherwise ! + 2(fn - 1 2}
=D =2n—~1/2] -1 < u-— 1asoproves (A2

Areexbin B
PrROOF OF (4.4)

Take any j > n /2. Supposc that we can find as an
isometry ¥: 3 -~ 3 so that

Y Y =1
2y ¥ mapstheset {ry 'wlw < 00wl < 0 - DYoo
itsclf.

3) ¥ maps the points {16} U {6y Nwie < 00
< n — 1} onto a set of poine cach of which is <
1y ‘

Let YY = ¥, and define £V similarly. Then. thanks to
isotropy. Y'Y has the same statistics as Y. Thus from (4 )

EY (B.1

a ¥
“tn L yr, o
However. thanks to properties (1) and (2) of ¥

AR
I‘V w7 f-'r 1
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Fig. 13, Hlustrating the isometry used in Appendix A for the case n = Sand y = 3, Here the pival pomtas 1y

"so that the

part of the tree toward ¢ from 1y is left unchanged. The “rotation”™ exchanges the pants 15 * and 19 “4 and maps then

successors accordingly. The set of nodes indicated with

. which s in this case both fry "wen @ 0w € o It oand

{879 "wlw £ 0. hwi = n = 1} is left invariant by this isometry. Also the point 15" is mapped oo ore ot the immediate

successors of 14 8, buth of which are <1y .

while thanks to property (3) and {2.9)
Egon, € 3{Y) i lw < 0}, (B.2)

Equations (B.1) and (B.2) then tmply (4.4).

The required isometry is of the pivot type used in the
proofs in [1, appendix C]. As illustrated in Fig. 13, the
pivot for this isometry is the point ty "' *""*' and the di-
rection of “‘rotation’’ is as indicated in the figure. It is
straightforward to check that this isometry has the re-
quired properties.

Aprpenpix C
Some Userut LEMMAS

The first lemma is an immediate consequence of the
Schur recursions (22.6)-(2.31):

Lemma C. I: Consider the transformation ¥ which maps
an isotropic covariance sequence {r,} to the correspond-
ing reflection coefficient sequence. The lacobian of this
transformation satisfies the following:

ok,
={ forn < m (C.1)
ar,,
ak-, 1 .
e e 2 2
Or 27 Py 1 (0) (©2)
ak2" e 1

= 0 3
iy 2" HPL0) + 8™ [Py, O) * (€5

where the P, are the Schur series defined in (2.26).
Next we write K = (k,), . =, to denote a vector in R,

and we let § denote the set of such vectors so that
= <k <
"‘% < k:,, < +1.

Lemma C.2: Consider a function ® from R into R sar-
isfving the following properties.

1y ®(K)Y = Qif K is the reflection coefficient sequence
of an isotropic process.

2) dis analviic inside S.

Then, ® = 0in 8.

Proof: Since @ is analytic in S, tt is suthcient to
show that & is zcro on a set with nonempty interior in S,
Since we know that ®(K) = 0 if K 1s in the image of the
map ¥ introduced in Lemma C. 1, it is sutficient for us to
show that the image of ¥ has a nonempty interior.

Thanks to the form of the Schur recursion formulac
(2.26)-(2.31). we know that ¥ is also a rational tfunction
and. thanks to Lemma C. 1, its Jacobian is triangular and
always invertible. Thus it is suthicient to show that the set
of finite sequences {r, |0 <= n < N} that can be extended
to a covariance function of an isotropic process has a non-
emply interior. However, this property is characterized by
a finite family of conditions of the form

Rrg. -~ .ryy =0 (C.4

;
where R(ry. - - | r,) denotes @ matrix whose clements
are chosen from the r,. .1, The setof tp + 1)
tuples satisfying these conditions with strict inequality 1s
nonempty (for instance, r, = &,, is the covariance se-
guence of white noise) and as a consequence the set of 7.
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<o rasatistying (C4) has a nonempty antenor. This
tinishes the proot of the femma,
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